
SHENZHEN TERUIXIANG ELECTRONIC CO.,LTD

Specifications for a.c. ceramic capacitors (Y1)

Revision history

Edition	RevisionTime	Revision content	Revision People
A0	Mar 15,2008	The first draft	DANRYDENG
A1	Feb 15,2010	Change : 5. How to order 18.Voltage proof test guide	DANRY DENG
A2	Feb 14,2011	Add: Capacitors on tape type pitch 7.5mm /10mm Chang: 5. How to order	DANRY DENG
A3	May 13,2011	Add: Cautions and warnings Change: 6. Approval standard and file number ENEC10 VDE	DANRY DENG
A4	Jan 02,2012	Change : 7. Capacitance and dimension	DANRY DENG
B0	Aug 23,2012	Change : 10. Temperature characteristic of capacitor 11. Requirements for concentration limits for certain hazardous substances SVHC84item	DANRY DENG
B1	Dec 30,2012	Add: The book cover Revision history Directory change : 5. How to order 11. Requirements for concentration limits for certain hazardous substances SVHC128item 14. Packing	DANRY DENG
B2	Apr 25,2014	Change : 6. Approval standard and file number 400VAC to 500VAC 13. Marking design	DANRY DENG

SHENZHEN TERUIXIANG ELECTRONIC CO.,LTD www.trxc.net

Directory

1. Scope	
2. Object	4
3. Normative references	4
4. Terms and definitions	
5. How to order	
6. Approval standard and file number	6
7. Capacitance and dimension	
8. The constituent parts of capacitor	 6
9. Figure and code of dimension	7
10. Temperature characteristic of capacitor.	
11. Requirements for concentration limits for certain hazardous	substances8
12. Performance test.	
13. Marking design	
14. Packing	14
15. Storage conditions	15
16. Cautions and warnings	15
17.general knowledge for AC ceramic Capacitors	15
18.Voltage proof test guide	16

Specifications for a.c. ceramic capacitors (Y1)

1. Scope

Unity Pragmatic Win-win

Y1 a.c, ceramic capacitors are used in electrical and electronic equipment and connected an a.c. main with nominal voltage not exceeding 1000va.c, and with a nominal frequency not exceeding 100Hz.

2. Object

The principal object of this standard is to prescribe preferred ratings and characteristics and to select the appropriate tests and measuring methods and to give general performance requirements for Y1 a.c. ceramic capacitors.

3. Normative references

Fixed capacitors for use in electronic equipment-Part 1: Generic specification

IEC 60384-14 3'rd: 2005

Fixed capacitors for use in electronic equipment

Part 14: Sectional specification

Fixed capacitors for electromagnetic interference suppression and connection to the supply mains

GB/T 5169.5-1997 (IDT IEC 60695-2-2:1991)

Fire hazard testing for electronic products Part 2: Test methods Section 2: Needle-flame test

GB/T 2828.1-2003 (IDT ISO 2859-1,1999)

Sampling projectures for inspection by attributes-

Part 1: Sampling schemes indexed by acceptance quality limit(AQL)for lot-blot inspection

- GB/T 2471-1995 (IDT IEC 63:1963): Preferred number series for resistors and capacitors GB/T 2691-1994 (IDT IEC 62:1992): Marking codes for resistors and capacitors
- SJ/T 11363-2006: Requirements for concentration limits for certain hazardous substances in electronic information products

SJ/T 11364-2006: Marking for control of pollution caused by electronic information products

- 1/T 11365-2006: Testing methods for hazardous substances in electronic information products
- 2011/85/EU: (RoHS2.0)The Restriction of the use of certain Hazardous substances in Electrical and Electronic Equipment
- 2002/96/EC (WEEE): Waste Electrical and Electronic Equipment
- 94/62/EC: Europe Parliament and Council Directive94/62/EC of 20 December 1994 on Packaging and packaging waste
- No1907/2006(REACH): Registration, Evaluation, Authorization and Restriction of Chemicals(151item)

Unity Pragmatic Win-win

4. Terms and definitions

4.1 a.c. capacitor

Capacitor designed essentially for application with a power-frequency alternating voltage NOTE: a.c. capacitor may be used on d.c. supplies having the same voltage as the a.c. r.m.s. rated voltage of the capacitor.

4.2 capacitor of class Y

Capacitor of a type suitable for use in situations where failure of the capacitor could lead to danger of electric shock.

4.3rated voltage

Either the r.m.s. operating voltage of rated frequency or the d.c. operating voltage, which may be applied continuously to the terminations of a capacitor at any temperature between the lower and the upper category temperatures.

4.4 tangent of loss angle(tanδ)

The power loss of the capacitor divided by the reactive power of the capacitor at a sinusoidal voltage at a specified frequency.

4.5upper category temperature

Maximum surface temperature for which the capacitor has been designed to operate continuously.

4.6 lower category temperature

Minimum surface temperature for which the capacitor has been designed to operate continuously.

4.7climatic category

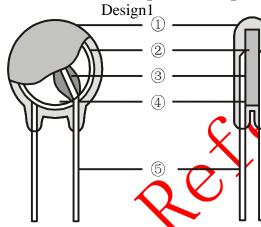
The climatic category which the capacitor belong to is expressed in numbers (IEC 60068-1e.g.:25/125/21). The first number represents the lower category temperature (e.g.: -25° C); the second number represents the upper category temperature (e.g.: $+125^{\circ}$ C) and the third number represents the number of days relevant to the damp heat test (e.g.:21days)

4.8 temperature characteristic of capacitor

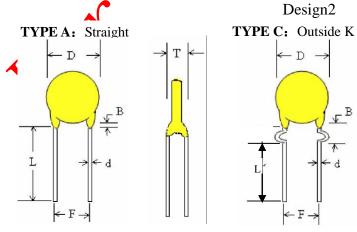
The maximum reversible variation of capacitance produced over a given temperature range within the category temperature range, normally expressed as a percentage of the capacitance related to a reference temperature of 20° C.

5. How to order

<u>Y1</u>	<u> </u>	<u>222</u>	<u>M</u>	<u>073</u>	<u>X</u>	<u>280</u>	<u>A</u>
Class	Dielectric	Capacitance	Tolerance	Dielectric diameter	Leads spacing	Leads length	Lead Type
Y1	B:Y5P	222:2200PF	K: ±10%	073:7.3mm	X:10mm	280:28mm	A: Straight
Y2	F:Y5V	101:100PF	M: ±20%	112:11.2mm	U:7.5mm	028:2.8mm	C: outside k
	E:Y5U	103:10000PF					D: front and
							back curve


Codes for capacitance shall be find expression in three numbers. The first two digits are significant, and the third digit is number of zero.

6. Approval standard and file number


			Table	1		
NO	COUNTRY	S	STANDARD NO.	CLASS TYPE W.V C.C P.F.C	FILE NO.	MARK
1	GERMANY EUROPE	VDE	DIN EN 60384-14 (VDE 0565 Teil 1-1): VDE 2006-04 EN60384-14:2005-08 IEC 60384-14(ed.3)		40023136 40031733	
2	USA CSA	UL CUL	UL 60384-14 2010 CSA E60384-14 :09	Y1 TY AC 500V 25/125/21B	E315719	c RL us
3	CHINA	CQC	IEC 60384-14:2005	Y1 TY AC500V 25/125/21B	CQC14001107432	

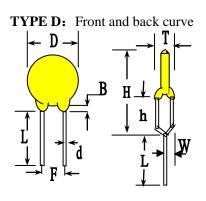
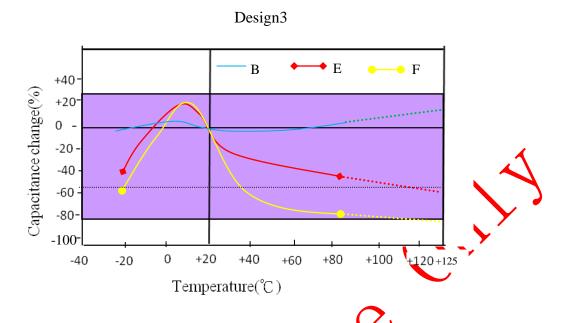

7. The constituent parts of capacitor

		Table 2	
	NO.	constituent	material
C) (]	Coating	Epoxy
	2	Ceramic medium	Ceramic
	3	Solder	Soldering tin
	4	Electrode	Silver oxide
	5	Lead Frame	CP wire

8. Figure and code of dimension

SHENZHEN TERUIXIANG ELECTRONIC CO.,LTD www.trxc.net

Unity Pragmatic Win-win


9. Capacitance and dimension

TY Type - CLASS Y1Table 3							
Dert Newland Temp		Cap Value	CAP	DIMENSIONS(mm)			d
Part Number	Char	(Pf)	TOL	D	F	Т	±0.05mm
				(±0.8)	(±0.5)	(±0.8)	
Y1B101K□□□		100		6.5			
Y1B151K		150		6.5			
Y1B221K□□□		220		6.5			
Y1B271K□□□		270		6.5			
Y1B331K□□□	Y5P	330	K	7.5	7.5		
$Y1B391K\Box\Box\Box$	(B)	390	к ±10%	8.5	or	4.5	Y
$Y1B471K\Box\Box\Box$	±10%	470		8.5	10		
$Y1B561K\Box\Box\Box\Box$		560		9.5			
$Y1B681K\square\square\square$		680		9.5			
Y1B821K□□□□		820		10			
$Y1B102K\Box\Box\Box\Box$		1000		11	\mathcal{O}_{1}		
Y1E471M□□□		470		6.5			
$Y1E102M \square \square \square$		1000		7.5			
Y1E152M□□□	Y5U	1500	×	9			0.55
$Y1E222M \square \square \square$	(E)	2200	M	11	7.5	4.5	
Y1E272M□□□	+22%	2700	<u>+20%</u>	12	or 10	4.3	
Y1E332M□□□□	-56%	3300		12	10		
Y1E392M□□□	(3900	7	13			
$Y1E472M\Box\Box\Box\Box$		4700		15			
Y1F471M□□□□		470		6.5			
Y1F102M□□□□	hV) 1000		6.5			
Y1F152M□□□□	Y5V	1500		7.5			
Y1F222M□□□	(F)	2200	М	8.5	7.5		
Y1F272M□□□	+22%	2700	±20%	9	or 10	4.5	
Y1F332M□□\□	-82%	3300		10	10		
Y1F392M□□□		3900		11			
XIF72METOO		4700		11			

SHENZHEN TERUIXIANG ELECTRONIC CO.,LTD www.trxc.net

Unity Pragmatic Win-win

10. Temperature characteristic of capacitor

11. Requirements for concentration limits for certain hazardous substances

substances	concentration (unit: ppm)
Cadmium and cadmium compounds	<100
Lead and lead compounds	<1000
Mercury and mercury compounds	<1000
Hexavalent chromium compounds	<1000
Polubrominated bighen is	<1000
Polubrominated diphenylethers	<1000
$Cd+Pb+Hg+Cf^{+6}$ (packing materials)	<100
Cl	<900
В	<900
Cl+Br	<1500
SVHC (151item)	<1000

12. Performance test

	Table 5(1)									
NO	it	em	performance	measuring method						
1	4.1Visual examinat		No visible damage legible marking lead frame is not oxidation and its surface is without sundries.	unaided eye or magnifier						
2	4.1Dime	nsions	accorder Table3	vernier caliper						
3	4.1Printi	ng	accorder design4	magnifier						
4	4.2.1 Voltage									
	4 voltage proof Bod insulat		No permanent break-down or flashover during the test period	test voltage: 4000VAC frequency: 50/60Hz duration: 60 seconds leakage current: 5mA max						
5	4.2.2 Capacitance		Within specified tolerance K: ±10% M: ±20%	Temperature: 25±3°C Humidity: 55±30%RH Voltage: 1.0±0.2V Frequency: 1±0.2KHZ						
6	4.2.3 Dissipation factor		Within specified tolerance Y5P: $\leq 2.5\%$ Y5U: $\leq 2.5\%$ Y5V: $\leq 2.5\%$	Temperature: 25±3°C Humidity: 55±30%RH Voltage: 1.0±0.2V Frequency: 1±0.2KHZ						
7	4.2.4 Capacitor-temperat ure characteristic		Y5P: ±10% Y5U: +22%~-56% Y5V: +22%~-82%	Temperature tolerance: $\pm 2^{\circ}C$ step12345Tem (°C)+20-25+20+85+20 $\Delta = (C_X - C_0) / C_0$ C_X capacitor for step2,4 C_0 capacitor for step 3						

	Table 5(2)							
NO	item	L	perfo	ormance	measuring method			
8	4.2.5Between lead wire8Insulation resistanceBody insulation		6000MΩ MIN		Measuring voltage: 500VDC Frequency: 50/60Hz duration: 60 seconds leakage current: 5mA max			
0			6000MΩ MIN		Measuring voltage: 500VDC Frequency: 50/60Hz duration:60 seconds leakage current: 5mA max			
	4.3	tensile	force:>10N		Fixed capacitor'body and Lead wire, lower lead wire.			
9	Robustness of terminations	bending	Lead wire shall Capacitor shall No visible dam	not be broken.	Two consecutive bends shall be applied in each direction			
			visual examination voltage proof	no visible damage accorder 4.2.1 Y5P: ±10%	Solder temperature: $260\pm5^{\circ}C$ Immersion time: 10 ± 1 seconds The depth of immersion: $2^{+0}_{-0.5}$ mm from the seating plane Using a thermal insulating screen of			
10	4.410 Resistance to soldering heat		esistance to		1.5±0.5mm thickens Capacitor shall be placed at 25 ± 3 °C for $24\pm2h$ before initial measurements.			
			dissipation factor	Y5P: ≤2.5% Y5U:22.5% Y5V: √2.5%				
			Insulation resistance accorder 4.2.5					
11	4.5 Solderability		free flowing o	as evidenced by of the solder with e terminations or w within 3s.	Bath temperature: $260 \pm 5^{\circ}$ C Immersion time: 2 ± 0.5 seconds Depth of immersion(from the seating plane or component body): Capacitors below 2^{0} -0.5mm,using a thermal insulating screen of 1.5 ± 0.5 mm thickness.			
	<		visual	No visible	test temperature: upper category temperature $+125\pm3$ °C			
	~ 0	Y	examination voltage proof	damage accorder 4.2.1	lower category temperature $-25\pm3^{\circ}$ number of cycles :5			
12	A 6 Rapid chang temperature	pid change of	capacitance	Y5P: ±10% Y5U: ±20% Y5V: ±20%	duration of exposure at the temperature limits: 30minutes Capacitor shall be placed at 25 ± 3 °C for			
	temperature		dissipation factor	Y5P: ≤2.5% Y5U:≤2.5% Y5V: ≤2.5%	24±2h before initial measurements.			
			Insulation resistance	accorder 4.2.5				
13	4.7 Vibration		Capacitor shall damage	not visible	Frequency rangs: $10 \rightarrow 55 \rightarrow 10$ Hz swing: 0.75mm, The total duration shall be 6 hours. duration of exposure at X,Y,Z: 2hours			

Table 5(3)							
NO	item	-	formance	measuring method			
14	4.12 Damp heat	capacitance voltage	No visible damage $\Delta = (C_X - C_0)/C_0$ $\Delta: \pm 15\%$ accorder 4.2.1	test temperature: 40 ± 2 °C humidity: $95\pm3\%$ RH duration: $500+24/-0$ hours voltage: $500VAC(U_R)$ for one half of the samples. capacitor shall be placed at 25 ± 3 °C for			
	(steady state)	$\begin{array}{c c} proof & accorder 4.2.1 \\ \hline \\ Insulation \\ resistance & \Delta = (R_X - R_0)/R_0 \\ \Delta > 50\% \end{array}$		24±2hours before measurements.			
15	4.13 Impulse voltage	flashover dur If any three s are shown b monitor to ha indicating th breakdowns taken place in no further applied and be counted as If all 24 in applied to the more of them indicating th breakdowns occurred, th shall be coun If less than th	tt breakdown or ing the test period. successive impulses by the oscilloscope ave had a waveform hat no self-healing or flashovers have in the capacitor, then impulses shall be the capacitor shall s conforming. mpulses have been the capacitor and 3 or in are of a waveform hat no self-healing or flashovers have hen the capacitor ted as conforming. me impulses are of waveform, then the all be counted as a ng item	Peak impulse voltage:8.0KV Impulses distance : > 10seconds Impulses times:24			
16	4.14 Endurance	visual examination capacitance voltage proof Insulation resistance	No visible damage $\Delta = (C_X - C_0)/C_0$ $\Delta : \pm 20\%$ accorder 4.2.1 $\geq 3000M\Omega$ $\Delta = (R_X - R_0)/R_0$ $\Delta > 50\%$	Test temperature: 125 ± 3 °C Duration: $1000+24$ /-0hours test voltage: $850VAC(1.7U_R)$, except that once every hour the voltage shall be increased to 1000v r.m.s. for 0.1s. Each of these voltage shall be applied To each capacitor individually through a resistor of $47\Omega\pm5\%$. Capacitor shall be placed at 25 ± 3 °C for 24 ± 2 hours before measurements.			

Table 5(3)

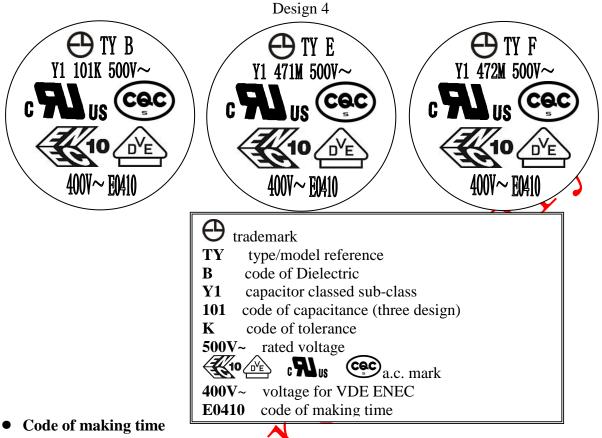


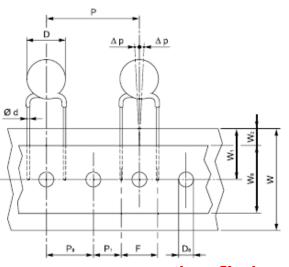
Table 5(4)							
NO	item	pe	rformance	measuring method			
		capacitance $ \begin{vmatrix} \Delta = (C_X - C_0) \\ \Delta : \pm 20\% \end{vmatrix} / C_0 $		Charge voltage: $707 \text{VAC}(\sqrt{2}\text{U}_{\text{R}})$ number of cycles: 10000 the rate of approximately:			
17	4.15 Charge and discharge	Insulation resistance	$\geq 3000 M\Omega$ $\Delta = (R_X - R_0) / R_0$ $\Delta > 50\%$	one operation per set Each cycle shall con discharging the capa Each capacitor shall charged by applying through a resistor w $R = \frac{220 \times 10^{-6}}{C_R}$ Capacitor shall be p 24 Shours before m	nsist of cha acitor. I be indivite g the test ver ith the ver of placed at 25	lually oltage ue $5\pm3^{\circ}$ C for	
18	4.17 Passive flammability	The burning specimen sh time specific Burning dr parts fallin	category: B The burning time of any specimen shall not exceed the time specified. Burning droplets or glowing parts falling down shall not ignite the tissue paper.		flame time 5S 10S 20S 30S	Maximum burning time ≤30S ≤30S ≤30S ≤30S	
19	4.19 Component solvent resistance	No visible damage. Performance accorder 4.2.1~4/2.5		Solvent to be used: 30±5% isopropyl alcohol and 70±5% fluxional compound Solvent temperature: 23±5°C The capacitor shall be immerged in solvent for 5±0.5 seconds. Recovery time: 8hours			
20	4.20 Solvent resistance of the marking	The marking shall be legible		Solvent to be use $30\pm5\%$ isopropyl and $70\pm5\%$ fluxio Solvent temperat The capacitor si in solvent for $5\pm$ markshall be wi for 10times.	l alcohol onal com ture:23± hall be i £0.5secon	5° C immerged ids and its	

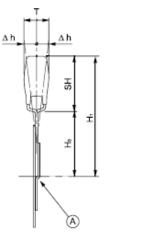
Table 5(4)

13. Marking design

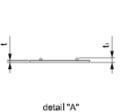
Table 6										
	code of year				code of month		code of day			
	year	code	year	code	month	code	day	code	day	code
			2020	M	1	01	1	01	16	16
	¥	¥	2021	N	2	02	2	02	17	17
	2010	А	2022	Р	3	03	3	03	18	18
	2011	В	2023	R	4	04	4	04	19	19
	2012	(P	2024	S	5	05	5	05	20	20
	2013	D	2025	Т	6	06	6	06	21	21
	2014	Е	2026	U	7	07	7	07	22	22
	2015	F	2027	V	8	08	8	08	23	23
	2016	Н	2028	W	9	09	9	09	24	24
	2017	J	2029	Х	10	10	10	10	25	25
	2018	K			11	11	11	11	26	26
	2019	L		↓	12	12	12	12	27	27
							13	13	28	28
							14	14	29	29
							15	15	30	30
									31	31

NOTE: The code of year shall be one operation per 20 years.


14. Packing


A:bulk

DIMENSION	Lead length	Bag		
ΦD< ⁰ mm	≤10mm	1000PCS		
ΦD<8mm	>10mm	500PCS		
ΦD≥8mm	500PCS			


B: TAPE (1000PCS/BOX)

Capacitors on tape type pitch 7.5mm /10mm

	Symbol	Taping Specifications(unit: mm)						
Parameter		Pitch 7.5	Pitch 10	Tolerance				
lead diameter	Φd	0.55	0.55	±0.1				
pitch between capacitors	р	12.7	25.4	±1.0				
feed-hole pitch	P ₀	12.7	12.7	±0.3				
feed-hole centre to lead centre	P ₁	8.95	7.62	±0.7				
lead spacing	F	7.5	10.0	±1.0				
component alignment	Δh	0	0	±3.0				
deviation along tape, left or right	Δp	0	0	±1.3				
tape width	W	18.0	18.0	±0.5				
hold-down tape width	\mathbf{W}_0	12.0	12.0	-				
hole position	\mathbf{W}_1	9.0	9.0	±0.5				
hold-down tape position	\mathbf{W}_2	3.0	3.0	-				
seated height to tape centre	H_0	20.0	20.0	±1.0				
maximum component height	H_1	37.0	37.0	-				
feed-hole diameter	D_0	4.0	4.0	±0.2				
total tape thickness	t	0.50	0.50	±0.2				
maximum thickness of tape and wires	t_1	1.0	1.0	-				

SHENZHEN TERUIXIANG ELECTRONIC CO., LTD www.trxc.net

Unity Pragmatic Win-win

15. Storage conditions

The capacitors are must not stored in a corrosive atmosphere, where sulphide or chloride gas, acid, alkali or salt are present. Exposure of the components to moisture, should be avoided. Capacitors can be stored for short periods at any temperature within the entire range of category temperature. For long storage periods, however, the following conditions should be observed:

- ■Storage temperature:-25 to +40°C
- ■Maximum relative humidity 80%,no dew allowed on the capacitor.
- ■Maximum duration 12months.

16. Cautions and warnings

1. Attention is drawn to the fact that repetition of the voltage proof text by the user may damage the capacitor.

2. Do not place the capacitor a PC board whose hole space differs from the specified lead space.

3. Avoid any compressive, tensile or flexural stress.

- 4. Please consult us first if you wish to embed the capacitor in plastic resins.
- 5. Do not move the capacitor after it has been soldered to the board.
- 6. Do not pick up the PC board by the soldered capacitor.

17.general knowledge for AC ceramic Capacitors

1. The test conditions for capacitance and Dissipation factor($tan\delta$)

- 1.1Environment: temperature : 25±3° hundidity : 55±30% RH
- 1.2voltage and frequency for test apparatus: 1.0±0.2V, 1KHZ±20HZ
- 1.3Capacitor shall be store in environment for test more than two hours before test.

2.The test method

2.1 for capacitance and Dissipation factor($tan\delta$) :

2.1.1The capacitor is used after be clamped with the test tool, can't take the capacitor's noumenon for test with hand. Capacitance and dissipation factor are not exact because of temperature in hand and test result is not right.

2.1.2The capacitor's capacitance and Dissipation factor after voltage tested may not test before the capacitor is stored for 24 hours after voltage test.the capacitor must be discharge between leads before test, or else voltage of remainder attaint test apparatus.

2.2for Voltage proof:

Charge to capacitor after AC or DC Voltage, value, time and current are seted in test apparatus, clamping capacitor's lead with clamp for test apparatus output. Space between clamps for test apparatus output must meet standard, or else flashover will be happened between two leads if space is too small. Capacitor's configuration was be destroyed if great current will be happened in capacitor for moment.

A. Correct Method

Operate explain:

1.Set up test voltage, current and time in high voltage instrument.

2. The two pins of capacitor are nipped in fixture of high voltage instrument.

3. Give the start button a slight press and the capacitor changed and tested, high voltage instrument stop output when the time arrived

B. Error Method

Operate explain:

Capacitor was test with high voltage test probe for electriferous touch the two pins of capacitor.

Harm:

It will happen flashover in high voltage test probe and two pins of capacitor. One part of capacitors will hazardous. It will emerge bad in used.